Tag Archives: cellulose

A Better Route to Xylan

Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels

After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels. A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.

The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels. (more…)

Read More

E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels

*Joint BioEnergy Institute (JBEI) Researchers Reach Milestone on the Road to Biofuels*

A milestone has been reached on the road to developing advanced biofuels that can replace gasoline, diesel and jet fuels with a domestically-produced clean, green, renewable alternative.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have engineered the first strains of  Escherichia coli bacteria that can digest switchgrass biomass and synthesize its sugars into all three of those transportation fuels. What’s more, the microbes are able to do this without any help from enzyme additives. (more…)

Read More

Researchers Find Potential Key for Unlocking Biomass Energy

EAST LANSING, Mich. — Pretreating non-edible biomass – corn leaves, stalks or switch grass – holds the keys for unlocking its energy potential and making it economically viable, according to a team of researchers led by Michigan State University.

Shishir Chundawat, a postdoctoral researcher, and Bruce Dale, professor of chemical engineering and materials science, of MSU led a team of researchers in identifying a potential pretreatment method that can make plant cellulose five times more digestible by enzymes that convert it into ethanol, a useful biofuel. The research was supported by the Great Lakes Bioenergy Research Center, a partnership between the University of Wisconsin and MSU and published in the current issue of Journal of the American Chemical Society. (more…)

Read More