Tag Archives: jet fuel

Biofuels Blend Right In

Researchers Show Ionic Liquids Effective for Pre-Treating Mixed Blends of Biofuel Feedstocks

Winemakers have long known that blending different grape varietals can favorably balance the flavor characteristics of the wine they produce. In the future, makers of advanced biofuels might use a similar strategy, blending different feedstock varieties to balance the energy characteristics of the transportation fuel they produce.

A collaborative study by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a bioenergy research center led by Berkeley Lab, and the Idaho National Laboratory (INL) has shown that an ionic liquid proven to be effective for pre-treating individual biofuel feedstocks is also effective at pre-treating multiple different feedstocks that have been mixed and densified into a blend. (more…)

Read More

More Bang for the Biofuel Buck

Berkeley Lab Researchers Combine Old Fermentation Process For Making Explosives with New Chemical Catalysis to Boost Biofuel Production

A fermentation technique once used to make cordite, the explosive propellant that replaced gunpowder in bullets and artillery shells, may find an important new use in the production of advanced biofuels. With the addition of a metal catalyst, researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the production of acetone, butanol and ethanol from lignocellulosic biomass could be selectively upgraded to the high volume production of gasoline, diesel or jet fuel.

Using the bacterium Clostridium acetobutylicum, the Berkeley Lab researchers fermented the sugars found in biomass into the solvent acetone and the alcohols butanol and ethanol, collectively known as “ABE” products. They then catalyzed these low carbon number products with the transition metal palladium into higher-molecular-mass hydrocarbons that are possible precursors to the three major transportation fuel molecules. The specific type of fuel molecule produced – whether a precursor to gasoline, diesel or jet – was determined by the amount of time the ABE products resided with the palladium catalyst. (more…)

Read More

A Fragrant New Biofuel

*JBEI Researchers Develop a New Candidate for a Cleaner, Greener and Renewable Diesel Fuel*

A class of chemical compounds best known today for fragrance and flavor may one day provide the clean, green and renewable fuel with which truck and auto drivers fill their tanks. Researchers at the U.S. Department of Energy’s Joint BioEnergy Institute (JBEI) have engineered Escherichia coli (E. coli) bacteria to generate significant quantities of methyl ketone compounds from glucose. In subsequent tests, these methyl ketones yielded high cetane numbers – a diesel fuel rating comparable to the octane number for gasoline – making them strong candidates for the production of advanced biofuels.

“Our findings add to the list of naturally occurring chemical compounds that could serve as biofuels, which means more flexibility and options for the biofuels industry,” says Harry Beller, a JBEI microbiologist who led this study. “We’re especially encouraged by our finding that it is possible to increase the methyl ketone titer production of E. coli more than 4,000-fold with a relatively small number of genetic modifications.” (more…)

Read More

Fill ‘Er Up With Tobacco? Berkeley Lab-Led Team Explores New Path to Biofuels

*ARPA-E funded project aims to produce fuel molecules in plant leaves*

Mention biofuels and most people think of corn ethanol. Some may think of advanced biofuels from switchgrass or miscanthus. But tobacco? Not likely.

That could change. A team of scientists led by a researcher from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) is exploring a way to produce gasoline, diesel, and jet fuel from the iconic plant of the South. (more…)

Read More

Primordial Dry Ice Fuels Comet Jets

*Initial science results on comet released from University of Maryland, much more to come UMD scientists say.* 

 

Jets Galore. This enhanced image, one of the closest taken of comet Hartley 2. Image credit: University of Maryland

COLLEGE PARK, Md. – One of the biggest comet findings coming out of the amazing images and data taken by the University of Maryland-ledEPOXI mission as it zipped past comet Hartley 2 last week is that dry ice is the ‘jet’ fuel for this comet and perhaps many others. 

Images from the flyby show spectacular jets of gas and particles bursting from many distinct spots on the surface of the comet. This is the first time images of a comet have been sharp enough to allow scientists to link jets of dust and gas with specific surface features. Analysis of the spectral signatures of the materials coming from the jets shows primarily CO2 gas (carbon dioxide) and particles of dust and ice. 

“Previously it was thought that water vapor from water ice was the propulsive force behind jets of material coming off of the body, or nucleus, of the comet,” said University of Maryland Astronomy Professor Jessica Sunshine, who is deputy principal investigator for the EPOXI mission. “We now have unambiguous evidence that solar heating of subsurface frozen carbon dioxide (dry ice), directly to a gas, a process known as sublimation, is powering the many jets of material coming from the comet. This is a finding that only could have been made by traveling to a comet, because ground based telescopes can’t detect CO2 and current space telescopes aren’t tuned to look for this gas,” Sunshine said.  (more…)

Read More