Tag Archives: moon

Synthetic Biology for Space Exploration

Berkeley Lab Scientists Believe Biomanufacturing a Key to Long-term Manned Space Missions

Does synthetic biology hold the key to manned space exploration of the Moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels. In the future, synthetic biology could also be used to make manned space missions more practical. (more…)

Read More

Origin of Moon’s ‘ocean of storms’ revealed

New analysis, using data from NASA’s GRAIL spacecraft, has determined that the large dark patch on the western edge of the Moon’s near side is not an impact crater after all.

PROVIDENCE, R.I. [Brown University] — Oceanus Procellarum, a vast dark patch visible on the western edge of the Moon’s near side, has long been a source of mystery for planetary scientists. Some have suggested that the “ocean of storms” is part of a giant basin formed by an asteroid impact early in the Moon’s history. But new research published today in Nature deals a pretty big blow to the impact theory. (more…)

Read More

Voyager Map Details Neptune’s Strange Moon Triton

NASA’s Voyager 2 spacecraft gave humanity its first close-up look at Neptune and its moon Triton in the summer of 1989. Like an old film, Voyager’s historic footage of Triton has been “restored” and used to construct the best-ever global color map of that strange moon. The map, produced by Paul Schenk, a scientist at the Lunar and Planetary Institute in Houston, has also been used to make a movie recreating that historic Voyager encounter, which took place 25 years ago, on August 25, 1989. (more…)

Read More

Study Tests Theory that Life Originated at Deep Sea Vents

One of the greatest mysteries facing humans is how life originated on Earth. Scientists have determined approximately when life began (roughly 3.8 billion years ago), but there is still intense debate about exactly how life began. One possibility has grown in popularity in the last two decades – that simple metabolic reactions emerged near ancient seafloor hot springs, enabling the leap from a non-living to a living world.

Recent research by geochemists Eoghan Reeves, Jeff Seewald, and Jill McDermott at Woods Hole Oceanographic Institution (WHOI) is the first to test a fundamental assumption of this ‘metabolism first’ hypothesis, and finds that it may not have been as easy as previously assumed. Instead, their findings could provide a focus for the search for life on other planets. The work is published in Proceedings of the National Academy of Science. (more…)

Read More

Ancient crater may be clue to Moon’s mantle

A massive impact on the Moon about 4 billion years ago left a 2,500-mile crater, among the largest known craters in the solar system. Smaller subsequent impacts left craters within that crater. Comparing the spectra of light reflected from the peaks of those craters may yield clues to the composition of the Moon’s lower crust and mantle — and would have implications for models of how the Moon formed.

PROVIDENCE, R.I. [Brown University] — Researchers from Brown University and the University of Hawaii have found some mineralogical surprises in the Moon’s largest impact crater. (more…)

Read More

Moon: It’s the right time to return

Last week, Apollo 15 commander David R. Scott, a visiting professor at Brown and one of 12 men to walk on the Moon, addressed Professor Jim Head’s introductory geology classes. He discussed the scientific returns of the Apollo missions and encouraged students to look to Apollo as a template for future human exploration of planetary bodies.

After the near-disaster of Apollo 13, NASA’s lunar exploration program stood at a crossroads. President Kennedy’s goal of landing a man on the Moon and returning him to Earth had been achieved, and many wondered, given the dangers, if it might be time to scrap Apollo. (more…)

Read More

Water Geysers on Saturn’s Moon

A new study published in Nature this week describes the forces that control the jets of water and organic material that erupt from the icy surface of Enceladus, a moon of Saturn. UA scientists contributed data to the study.

The intensity of the jets of water ice and organic molecules that shoot out from Saturn’s moon Enceladus depends on the moon’s proximity to the planet, according to data obtained by NASA’s Cassini spacecraft. The finding, detailed in the journal Nature this week, is the first clear observation that shows the Enceladus plume varies in a predictable manner. (more…)

Read More